Topics in Number Theory 2023 Homework 1 – Submit by 21-02-2023, 13:00 Steffen Müller

Exercise 1: (1+2+2 points)

Let p be an odd prime, let $L = \mathbb{Q}(\zeta_p)$, where ζ_p is a primitive pth root of unity, with minimal polynomial Φ_p .

- (a) Compute $\Phi'_p(\zeta_p)$.
- (b) Compute $N(1-\zeta_p)$.
- (c) Compute disc $(1, \zeta_p, \ldots, \zeta_p^{p-2})$.

Exercise 2: (3 points)

Let $L = \mathbb{Q}(\sqrt{d})$, with $d \in \mathbb{Z}$ squarefree. Show that $\mathbb{Z}_L = \mathbb{Z}[\alpha]$, where

$$\alpha = \begin{cases} \sqrt{d}, & \text{if } d \equiv 2,3 \pmod{4} \\ \frac{1+\sqrt{d}}{2}, & \text{if } d \equiv 1 \pmod{4} \end{cases}$$

Exercise 3: (2+2+1+4 points)

Let $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ and let $\beta = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} \in L$ for some $a, b, c, d \in \mathbb{Q}$. (a) Find a primitive element of L.

(b) Show that β is integral over \mathbb{Z} if and only if for all $m \in \{2, 3, 6\}$ we have:

 $\operatorname{Tr}_{L/\mathbb{Q}(\sqrt{m})}(\beta) \in \mathbb{Z}_{\mathbb{Q}(\sqrt{m})} \text{ and } \operatorname{N}_{L/\mathbb{Q}(\sqrt{m})}(\beta) \in \mathbb{Z}_{\mathbb{Q}(\sqrt{m})}(\beta)$

(c) Suppose that $\beta \in \mathbb{Z}_L$. Show that $2a, 2b, 2c, 2d \in \mathbb{Z}$.

(d) Show that

$$\left(1,\sqrt{2},\sqrt{3},\frac{\sqrt{2}+\sqrt{6}}{2}\right)$$

is an integral basis of L.

Exercise 4: (optional)

Let $\beta = \cos(72^\circ) \in \mathbb{R}$ and let ζ_5 be the primitive 5th root of unity $\beta + i \sin(72^\circ)$. Let $L = \mathbb{Q}(\zeta_5)$ and let $\alpha = a + b\zeta_5 + c\zeta_5^2 + d\zeta_5^3 \in L$, where $a, b, c, d \in \mathbb{Q}$. (a) Compute $Tr(\alpha)$.

(b) Show that

$$16\beta^5 - 20\beta^3 + 5\beta = 1.$$

(c) Deduce that

$$\beta = \frac{\sqrt{5} - 1}{4}.$$

- (d) Show that $\sqrt{5} \in L$. (*Hint: Consider* $\zeta_5 + \zeta_5^4$.)
- (e) Compute $N_{L/\mathbb{Q}(\sqrt{5})}(\alpha)$.
- (f) Use (e) to compute $N_{L/\mathbb{Q}}(\alpha)$.