Topics in Number Theory 2023

Homework 1 - Submit by 21-02-2023, 13:00
 Steffen Müller

Exercise 1: $(1+2+2$ points $)$

Let p be an odd prime, let $L=\mathbb{Q}\left(\zeta_{p}\right)$, where ζ_{p} is a primitive p th root of unity, with minimal polynomial Φ_{p}.
(a) Compute $\Phi_{p}^{\prime}\left(\zeta_{p}\right)$.
(b) Compute $N\left(1-\zeta_{p}\right)$.
(c) Compute $\operatorname{disc}\left(1, \zeta_{p}, \ldots, \zeta_{p}^{p-2}\right)$.

Exercise 2: (3 points)
Let $L=\mathbb{Q}(\sqrt{d})$, with $d \in \mathbb{Z}$ squarefree. Show that $\mathbb{Z}_{L}=\mathbb{Z}[\alpha]$, where

$$
\alpha= \begin{cases}\sqrt{d}, & \text { if } d \equiv 2,3 \quad(\bmod 4) \\ \frac{1+\sqrt{d}}{2}, & \text { if } d \equiv 1 \quad(\bmod 4)\end{cases}
$$

Exercise 3: $(2+2+1+4$ points $)$
Let $L=\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and let $\beta=a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6} \in L$ for some $a, b, c, d \in \mathbb{Q}$.
(a) Find a primitive element of L.
(b) Show that β is integral over \mathbb{Z} if and only if for all $m \in\{2,3,6\}$ we have:

$$
\operatorname{Tr}_{L / \mathbb{Q}(\sqrt{m})}(\beta) \in \mathbb{Z}_{\mathbb{Q}(\sqrt{m})} \text { and } N_{L / \mathbb{Q}(\sqrt{m})}(\beta) \in \mathbb{Z}_{\mathbb{Q}(\sqrt{m})}
$$

(c) Suppose that $\beta \in \mathbb{Z}_{L}$. Show that $2 a, 2 b, 2 c, 2 d \in \mathbb{Z}$.
(d) Show that

$$
\left(1, \sqrt{2}, \sqrt{3}, \frac{\sqrt{2}+\sqrt{6}}{2}\right)
$$

is an integral basis of L.

Exercise 4: (optional)

Let $\beta=\cos \left(72^{\circ}\right) \in \mathbb{R}$ and let ζ_{5} be the primitive 5 th root of unity $\beta+i \sin \left(72^{\circ}\right)$. Let $L=\mathbb{Q}\left(\zeta_{5}\right)$ and let $\alpha=a+b \zeta_{5}+c \zeta_{5}^{2}+d \zeta_{5}^{3} \in L$, where $a, b, c, d \in \mathbb{Q}$.
(a) Compute $\operatorname{Tr}(\alpha)$.
(b) Show that

$$
16 \beta^{5}-20 \beta^{3}+5 \beta=1
$$

(c) Deduce that

$$
\beta=\frac{\sqrt{5}-1}{4}
$$

(d) Show that $\sqrt{5} \in L$. (Hint: Consider $\zeta_{5}+\zeta_{5}^{4}$.)
(e) Compute $\mathrm{N}_{L / \mathbb{Q}(\sqrt{5})}(\alpha)$.
(f) Use (e) to compute $\mathrm{N}_{L / \mathbb{Q}}(\alpha)$.

